Extensions 1→N→G→Q→1 with N=Dic3 and Q=C23

Direct product G=NxQ with N=Dic3 and Q=C23
dρLabelID
C23xDic396C2^3xDic396,218

Semidirect products G=N:Q with N=Dic3 and Q=C23
extensionφ:Q→Out NdρLabelID
Dic3:1C23 = C2xS3xD4φ: C23/C22C2 ⊆ Out Dic324Dic3:1C2^396,209
Dic3:2C23 = C22xC3:D4φ: C23/C22C2 ⊆ Out Dic348Dic3:2C2^396,219
Dic3:3C23 = S3xC22xC4φ: trivial image48Dic3:3C2^396,206

Non-split extensions G=N.Q with N=Dic3 and Q=C23
extensionφ:Q→Out NdρLabelID
Dic3.1C23 = C22xDic6φ: C23/C22C2 ⊆ Out Dic396Dic3.1C2^396,205
Dic3.2C23 = C2xC4oD12φ: C23/C22C2 ⊆ Out Dic348Dic3.2C2^396,208
Dic3.3C23 = C2xD4:2S3φ: C23/C22C2 ⊆ Out Dic348Dic3.3C2^396,210
Dic3.4C23 = D4:6D6φ: C23/C22C2 ⊆ Out Dic3244Dic3.4C2^396,211
Dic3.5C23 = C2xS3xQ8φ: C23/C22C2 ⊆ Out Dic348Dic3.5C2^396,212
Dic3.6C23 = Q8.15D6φ: C23/C22C2 ⊆ Out Dic3484Dic3.6C2^396,214
Dic3.7C23 = D4oD12φ: C23/C22C2 ⊆ Out Dic3244+Dic3.7C2^396,216
Dic3.8C23 = Q8oD12φ: C23/C22C2 ⊆ Out Dic3484-Dic3.8C2^396,217
Dic3.9C23 = C2xQ8:3S3φ: trivial image48Dic3.9C2^396,213
Dic3.10C23 = S3xC4oD4φ: trivial image244Dic3.10C2^396,215

׿
x
:
Z
F
o
wr
Q
<